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Abstract
We determine the degree of entanglement for two indistinguishable particles
based on the tensor product structure, which is a framework for emphasizing
entanglement founded on observational quantities. Our theory connects the
canonical entanglement and entanglement based on occupation number for
two fermions and for two bosons and shows that the entanglement measure,
based on linear entropy, is closely related to the correlation measure for both
the bosonic and fermionic cases.

PACS numbers: 03.65.Ta, 03.67.−a, 03.75.−b, 05.30.−d

Introduction

Entanglement and the indistinguishability of particles are two remarkable features of quantum
mechanics, yet combining the two in order to obtain a meaningful quantification of
entanglement for indistinguishable particles is challenging. Several definitions of correlation
and entanglement have been introduced [1–7], which both illustrate the choices that are
available in quantifying entanglement and underpin the ambiguities about what constitutes the
best measure of entanglement.

If entanglement is to be associated with observational properties that can overcome the
indistinguishability of the particles, then the tensor product structure (TPS) [8] plays a key
role. In fact entanglement itself is a consequence of the TPS and the superposition principle.
However, for systems consisting of many indistinguishable particles such as bosons and
fermions, the TPS is rather subtle. Approaches to quantifying entanglement can be subdivided
into two main categories: one based on the canonical decomposition [1–3] and the other
based on the occupation-number representation [8, 4]. Here we employ both approaches to
determine entanglement for two indistinguishable particles. Our approach is built on two
steps: (i) to use the canonical decomposition to obtain the canonical form of the two-particle
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states and (ii) to define entanglement from the canonical form of the state by the approach
based on the occupation-number representation. We refer to this form of entanglement for
indistinguishable particles as canonical entanglement. Although large numbers of particles
can be considered, the method is given for two particles, which can be used as a primitive to
treat multiple particles.

Tensor product structure for states of two indistinguishable particles

A pure state of two particles can be written as

|�〉 =
M∑

i,j=1

�ij â
†
i â

†
j |0〉, (1)

with â
†
i and â

†
j creation operators for modes i and j , respectively, and |0〉 being the vacuum

state (no particles at all). For the case of fermions, � is an antisymmetric matrix and the
creation operators are fermionic, while for the case of bosons, � is a symmetric matrix and
the creation operators are bosonic.

For the case of fermions, we assume that there is an even number of modes and set
M ≡ 2N ; for the bosonic case the number of modes is not important, and we will assign
M = N . The canonical form for the two-particle states can be obtained with the help of the
singular value decomposition (SVD) [2]. For any antisymmetric 2N × 2N matrix �A �= 0,
there exists a unitary operator UA such that �A = UAY A(UA)T , for Y A ≡ diag

[
Y A

1 , . . . , Y A
N

]
block diagonal with blocks

Y A
i =

(
0 yA

i

−yA
i 0

)
, (2)

and yA
i may be zero [1]. This decomposition is unique and yields the fermionic state

|�F 〉 =
N∑

k=1

2ykâ
′†
2k−1â

′†
2k|0〉 =

M∑
k,l=1

Y A
kl â

′†
k â

′†
l |0〉, (3)

for â
′†
k ≡ ∑N

i=1 Uikâ
†
i new fermionic operators. The above form is the canonical representation

[9, 10] so we refer to the state (3) as being represented in canonical form. The uniqueness of
the SVD ensures that the canonical modes themselves are unique.

Now that we have the canonical form of the two-particle fermion state, we can impose
the TPS [8] first by establishing the following operators:

σ̂k+ = â
′†
2k−1â

′†
2k, σ̂k− = â′

2k−1â
′
2k,

σ̂kz = 1
2

(
â

′†
2k−1â

′
2k−1 + â

′†
2kâ

′
2k − 1

)
,

(4)

which obey su(2) commutation relations. As operators with different subscripts k commute
with each other, the state effectively comprises distinguishable particles. Furthermore, the
state can be regarded as an N-qubit system with the kth qubit state given by the vacuum state
|0〉k and |1〉k = â

′†
2k−1â

′†
2k|0〉; the TPS is now evident:

|�F 〉 =
N∑

k=1

2yA
1 |100 . . . 0〉 + 2yA

2 |010 . . . 0〉 + · · · + 2yA
N |000 . . . 1〉. (5)

Further discussions of relevant mappings from fermions to qubits can be found in [11].
For two bosons, � in equation (1) is a symmetric complex matrix, and â

†
i and âi are

bosonic creation and annihilation operators. For any symmetric N × N matrix �S �= 0, there



Letter to the Editor L69

exists a unitary operator US such that �S = USY S(US)T , with Y S = diag
[
yS

1 , . . . , yS
N

]
and yS

i

possibly zero for some values of i. Applying this unique decomposition to the bosonic state
|�B〉 obtained from (1) yields

|�B〉 =
N∑

k=1

yS
k â

′†2
k |0〉,=

N∑
k,l=1

Y S
kl â

′†
k â

′†
i |0〉, (6)

where

â
′†
k =

N∑
i=1

US
ikâ

†
i (7)

are new bosonic canonical creation operators. The TPS for the two-particle bosonic state is
now clear:

|�B〉 =
N∑

k=1

√
2yS

1 |200 . . . 0〉 +
√

2yS
2 |020 . . . 0〉 + · · · +

√
2yS

N |000 . . . 2〉. (8)

If we view the two-boson state |2〉 as a one-excitation state |1〉, this state can be regarded as a
multiqubit state, and its entanglement is well defined.

Correlation measures and average entanglement

Paškauskas and You proposed a correlation measure based on the von Neumann entropy [2].
After deriving the above results, they first obtain the single-particle density matrix and then
obtain the correlation measure determined by the von Neumann entropy for this reduced state.
For both cases of two fermions and two bosons, the reduced density matrix is given by

ρνµ = Tr
(
ρ̂â†

µâν

)
Tr

(
ρ̂

∑M
µ=1 â

†
µâµ

) = 2(�†�)µν, (9)

with M = 2N and � = �A for fermions and M = N and � = �S for bosons.
The von Neumann entropy can be computed from the matrix elements of equation (9) to

obtain

S = −Tr[ρ̂ log2(ρ̂)]

=
{

−1 − 4
∑N

k=1

∣∣yA
k

∣∣2
log2

(∣∣(yA
k

)2∣∣), for 2 fermions,

−∑N
k=1

(
2
∣∣yS

k

∣∣2)
log2

(
2
∣∣(yS

k

)2∣∣), for 2 bosons.
(10)

Paškauskas and You used the above von Neumann entropy to quantify the quantum correlations,
and in the following we let SF (SB) denote the entropy for fermions (bosons). For an
uncorrelated state, the entropy SF = 1 for two fermions, thus one encounters the curious
situation that the entropy is not zero for an uncorrelated state [6]. As we will see shortly, the
average entanglement given below vanishes for the uncorrelated state, and thus this problem is
remedied. In contrast to the fermionic case, SB = 0 does hold for an uncorrelated two-boson
state.

Different entropies can be employed to quantify entanglement and correlations, and the
Von Neumann entropy is one of them. We use it to quantify the entanglement between one
qubit with the rest, namely, the Von Neumann entropy is employed to quantify both the
quantum correlations and entanglement. From equation (5), the entanglement between the kth
fermionic qubit and the rest is obtained as

EF,k = h
(
4
∣∣yA

k

∣∣2)
(11)
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for

h(x) ≡ −x log2 x − (1 − x) log2(1 − x). (12)

We employ the average entanglement to characterize the global entanglement properties;
average entanglement has been employed effectively for studies of nonlinear inhomogeneous
systems [12–15]. Thus, from equation (11), the average entanglement is given by

EF = 1

N

N∑
k=1

EF,k = 1

N

N∑
k=1

h
(
4
∣∣yA

k

∣∣2)
. (13)

For a non-entangled state, the entanglement measure EF = 0. Moreover, EF can be used to
quantify the entanglement of two fermions. From equations (10) and (13), we find a relation
between EF and SF , namely

EF = 1

N

[
SF − 1 −

N∑
k=1

(
1 − 4

∣∣yA
k

∣∣2)
log2

(
1 − 4

∣∣yA
k

∣∣2)]
. (14)

The above equation shows that the entanglement measure EF for two fermions is closely
related to the correlation measure SF .

For two bosons, from equation (8), the entanglement between the kth qubit and the
remaining N − 1 qubits is given by

EB,k = h
(
2
∣∣yS

k

∣∣2)
, (15)

and the average entanglement is

EB = 1

N

N∑
k=1

h
(
2
∣∣yS

k

∣∣2)

= 1

N

[
SB −

N∑
k=1

(
1 − 2

∣∣yS
k

∣∣2)
log2

(
1 − 2

∣∣(yS
k

)2∣∣)] . (16)

For a non-entangled state, EB = SB = 0. We see that our measures of entanglement for two
indistinguishable particles are closely related to the correlation measures for both cases of
bosons and fermions. To reveal a more direct connection between the canonical entanglement
measure and the correlation measure, we next adopt the linear entropy to quantify entanglement
and correlations. One merit of the linear entropy is that it is simpler to calculate and manipulate
than the von Neumann entropy.

Linear entropy for the measure of entanglement

The linear entropy for a state ρ̂ is defined as

E′ ≡ 1 − Tr(ρ̂2). (17)

As we are considering pure states, we may employ either the linear entropy or the Von
Neumann entropy to study the bipartite entanglement.

From equation (9), the two-fermion quantum correlation quantified by the linear entropy
is

S ′
F = 1 − 8

N∑
k=1

|yA
k |4. (18)
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From equation (5), the entanglement between the kth qubit and the rest is given by

E′
F,k = 8

(
|yk|2 −

N∑
k=1

4|yk|4
)

. (19)

Then, the average linear entropy is obtained as

E′
F = 2

N

(
1 −

N∑
k=1

16|yk|4
)

. (20)

We use the average linear entropy to quantify the entanglement of two fermions. From
equations (18) and (20), we obtain

E′
F = 2

N
(2S ′

F − 1). (21)

Thus, the entanglement measure E′
F is proportional to the correlation measure S ′

F up to an
additive constant. This result is important as we can now claim that the correlation of two
fermions considered by Paškauskas and You can be viewed as entanglement.

For two bosons, the correlation measure quantified by the linear entropy is

S ′
B = 1 − 4

N∑
k=1

∣∣yS
k

∣∣4
. (22)

From equation (8), the average entanglement is given by

E′
B = 2

N

(
1 − 4

N∑
k=1

∣∣yS
k

∣∣4

)
. (23)

It is evident that the two measures are connected by the following relation:

E′
B = 2

N
S ′

B, (24)

i.e. the entanglement measure E′
B is exactly proportional to the correlation measure S ′

B . In
other words, the entanglement and correlation measures are equivalent up to a multiplicative
factor if we adopt the linear entropy to quantify them.

Conclusions

In conclusion, we have given entanglement measures of two indistinguishable particles, and
both cases of bosons and fermions are considered. The approach here combines the advantages
of the approach based on the canonical decomposition and another one based on the occupation-
number basis. We also exploit the concept of average entanglement, characterizing the global
entanglement properties of the system.

We compare the entanglement measure with the correlation measure, and find they are
related. Specifically, we find that if we adopt linear entropy to quantify entanglement and
correlation, the entanglement measure for two fermions is a linear function of corresponding
correlation measure, and the entanglement measure for two bosons is equivalent to the
correlation measure up to a multiplicative constant. The correlation of two fermions considered
by Paškauskas and You can be viewed as entanglement, and this relationship, in turn, supports
our choices of entanglement measures.

Although we restricted ourselves to the two-particle cases, our approach sheds new light
on quantification of entanglement of indistinguishable many-body systems. We may study
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entanglement in many-fermion systems by appropriately pairing fermions. The TPS is the first
premise of quantum entanglement, and thus we have to identify a TPS in indistinguishable
systems in order to define entanglement. The various TPSs give rise to different entanglements.
For instance, by mapping 2N fermion modes to 2N qubits [4], we identify another TPS. The
entanglement via this TPS is obviously different from that via the TPS by pairing fermions
in the above discussions. The various TPSs lead to different entanglements which may
lead to ambiguities. However, this ambiguity is really an indication of the complexity of
entanglement, associated with the variety of purposes for which entanglement is useful.
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